
Cache System for Frequently Updated Data in the Cloud

Fusen Dong, Kun Ma, Bo Yang

Key Laboratory of Network Based Intelligent Computing
University of Jinan

No. 336, West Road of Nan Xinzhuang, Jinan
CHINA

fusendong@hotmail.com, ise_mak@ujn.edu.cn, yangbo@ujn.edu.cn

Abstract: - Maintaining data indexes and query cache becomes the bottleneck of the database, especially in the
context of frequently updated data. In order to reduce the burden of the database, a cache system for frequently
updated data has been proposed in this paper. In the system, update statements are parsed firstly. Then updated
data are saved as key-value pairs in the cache and they are synchronized into the database at idle time.
Experimental results show that the proposed cache system cannot only accelerate the data updating rate, but
also improve the data writing ability in maintaining indexes and consistency of cache data greatly.

Key-Words: - Frequently updated data, Query cache, Data index, Cache system, Update merging method,
Cloud database

1 Introduction
With the development of cloud computing, cloud
databases play a basic role in data analysis [1].
Since distributed cloud data are large-scale, data
access becomes a terrible problem in cloud data
processing [2] [3] [4]. Generally, query cache and
data index are utilized to increase the performance
of data reading. By storing the query data into high-
speed hardware and getting them from the cache
instead of databases, query cache speeds up data
reading. Besides, the process of data access can be
accelerated more by indexes which sort data
logically in database.

Therefore, the combining of these two methods
is used to improve the performance of data reading.
However, data are usually updated frequently in
many cases, e. g. mobile network. As it is known
that the data index and cache data should be
maintained with data updating, the work
maintaining data indexes and consistency of cache
data becomes difficult for database when data are
frequently updated. Herein, the performance of
database is seriously affected in this case [5] [6].

A cache system for frequently updated data
(CSFUD) is introduced in this paper, which
addresses the maintenance issue of the index and
query cache in database. The cache system saves the
updated data over a period time and then the data
are synchronized to the database at system’s idle
time. In this process, update operations are
optimized by update merging method (UMM),
which merges operations for the same data. By

using the system, data updating speed is improved
and the database becomes much more effective in
processing frequently updated requests.

The system can be applied not only to
document-oriented NoSQL databases in the cloud,
such as MongoDB [7], CloudDB [8], but also to the
rational databases like Oracle and DB2. In order to
facilitate the discussion, MongoDB is chosen as an
example to introduce the system in this paper. So far,
related researches of maintaining index have be
done, e.g., IBM and Microsoft. However, the
existing methods can quicken index maintenance
rate, but they could not reduce request times.

This paper is organized as follows. Section 2
discusses the related work recently. The data model
is introduced in section 3. In section 4, cache system
architecture is addressed. Section 5 presents and
discusses the experimental results. Brief conclusions
and future research directions are outlined in the last
section.

2 Related Work
When data are updated, indexes and query cache
need to be maintained to ensure their availability
and consistency. That is why database performance
is affected when the data are frequently updated.
Therefore, related work mainly focuses on
maintaining indexes and consistency of cache data.

For the query cache, there are few appropriate
approaches at present. Query cache is considered as
an effective way to speed up data reading and has

WSEAS TRANSACTIONS on COMPUTERS Fusen Dong, Kun Ma, Bo Yang

E-ISSN: 2224-2872 163 Volume 14, 2015

been widely used. Traditionally, cached data are
maintained in a fixed period. Nevertheless,
maintaining cache data in a fixed period is not so

effective though it is very easy，because data keep
updating and the cache data are not always
consistent with them in database [9]. To solve the
problem, Sugon and many other companies have
proposed the solution that utilizes middleware to
detect data updating operations and maintains cache
data [10]. Unfortunately, it is not clear that the
middleware has the ability to adapt the frequently
updated data.

 For data indexes, researchers have made great
achievements. As data index is a kind of data
structure that is stored in the database, index
maintenance is optimized by changing data
structures and maintaining strategies. The main
methods can be concluded as follows:

• Improved tree structures . Several
researchers have proposed the improved tree
structures to store indexes, which include
TPR*-tree, EuTPR*-tree, Rsb-tree, and so on
[11] [12] [13]. The new structures can be used
for e.g., multidimensional data, mobile network
data. Experiments have demonstrated that the
improved structures have accelerated data
indexes maintaining speed at the cost of slight
query performance degrade.

• Auxiliary index. IBM has proposed an
auxiliary index method to assist index
maintenance in large-scale data environment
[14]. This method uses other data structure as
an auxiliary index to assist maintaining index.
In case of data updating, database maintains
index and auxiliary index at the same time. If
one of these two maintenances is completed,
the data updating operation will complete. The
method improves individual index maintenance
speed, but it is known that many indexes may
be created to index data and every index need
an auxiliary device. Therefore, the method may
become low efficient when data have many
indexes.

• Asynchronous index maintenance.
Asynchronous index maintenance method is
another effective way. It provides techniques
for asynchronously maintaining database index
or sub-indexes. Indexes maintenance actions
are postponed when data are updated [15].
Besides, the index is divided into many sub-
indexes according to its length. Data updating
information is stored in a table. When a sub-
index is used, database maintains it by update
information stored. The method reduces the
burden of maintaining index greatly. However,

indexes must be maintained once the data are
queried in this method, thus it may be not so
effective for the data which are frequently read.
These methods mentioned above have made

great contributions to maintaining the indexes and
consistency of the query cache. However, in the
case that data are updated frequently, they cannot
reduce the update times like CSFUD.

3 Data Model in Cache
3.1 Storage of Updated Data
Updated data are saved as key-value pairs in the
cache. As shown in Fig. 1, id is the primary key of a
record in database, and it is used as the key in this
model. Value contains two parts: update type and
update fields. Update fields are the fields of a record
being updated. Updated data are stored in datasets.
The cache may include many datasets. Update data,
belonging to the same collection, will be stored into
a dataset. That is to say, datasets are used to
correspond with the collections or tables in database.

Fig. 1 Storage of updated data in cache.

Update operations are divided into three types:
Insert, Update and Delete. For Insert type, the
update statement includes all non-null fields of a
record except id. Therefore, key is not confirmed
and it is necessary to calculate a virtual id instead of
the id from database. The virtual id can be created
by checking id generation strategy in database. For
example, id is usually generated automatically and
the process is controlled by the Java class
“ObjectId” in MongoDB. Therefore, the java code
can be used in the cache to generate a virtual id as
the key of inserted data. For Update type, update
data usually include a part fields and the id also
cannot be obtained from statements directly, but it
can be gotten from the database by query the update
criteria. For Delete type, update criteria is to get the

WSEAS TRANSACTIONS on COMPUTERS Fusen Dong, Kun Ma, Bo Yang

E-ISSN: 2224-2872 164 Volume 14, 2015

id of the record, too. The id and update type is
stored but update fields are null in the model.

3.2 Update Merging Method
In the cache, data may be updated more than once in
a short time. Therefore, update merging method
(UMM) is introduced to merge update operations of
the same record. This method improves the cache
efficiency.

UMM includes two parts: type merging and
field merging. Type merging merges several update
types to one type when data are updated several
times. Field merging means that the updated fields
are merged together according to the mergence rules.

For type merging, mergence rules shown in
Table 1. Action one is the update operation before
and action two is the update operation later.

Table 1 Update Type Merging Rules

Action One Action Two Merging Results

Insert

Insert Fault

Update Insert
Delete Ignore

Update

Insert Fault
Update Update

Delete Delete

Delete

Insert Insert

Update Fault
Delete Fault

Different mergence rules are shown in Table 1.
In merging results column, Fault means that the
later action will return false while Ignore shows that
all the actions of the data will be ignore and the
update data should be deleted from the cache.

For field merging, the operations should follow
the rules below:

• The same fields: later covers before. Later
actions are priority to the earlier. If the same
fields have been updated repeatedly, the later
operation will cover the earlier operation.
• The different fields: combine together. If
actions update the different fields of a record,
the updated fields should be combined.

4 System Architecture
The cache system operates the database as a
middleware directly. As shown in Fig. 2, data
requesting from the server should be processed by
CSFUD firstly. Then the system controls update
requests and synchronizes them at idle time.
Updated data synchronization is a delayed operation

and the synchronizing time is determined by the
synchronization module in CSFUD, which is
introduced in section 4.1. It is the delayed
synchronization action that reduces the burden of
database in maintaining indexes and caches.

Fig. 2 Architecture of cache system for frequently

updated data.

As shown in Fig. 3, the system contains several
modules. Update query separator separates the data
update and query requests (data definition requests
will be sent to databases directly). Data update
requests are sent to the cache controller, which
parses update statements and updated data in the
cache, while reading requests are processed by the
query controller. Query controller executes query
requests separately in the database and cache. Then
the result corrector corrects the result from database
according to the cache data. The dashed line shows
that cache controller needs to query the update
criteria in order to confirm that the record is to be
updated. Through the query results, the key will be
fetched.

Fig. 3 Logical diagram of cache system for

frequently updated data.

4.1 Cache Writing
The cache controller processes the update
statements. It saves id as the key while the updated
types and fields are stored in value. Unfortunately,
the id usually cannot be gotten from the update
statements directly. The statement usually contains
two parts, i.e., update content and update criteria.
The update content is that the update fields and
update criteria show the record to be updated.

WSEAS TRANSACTIONS on COMPUTERS Fusen Dong, Kun Ma, Bo Yang

E-ISSN: 2224-2872 165 Volume 14, 2015

Therefore, cache controller parses the statement and
transforms update criteria to query statement. The
process has been shown in Fig. 4. After the cache
controller receives an update statement, it parses
update statement and gets the update content and
update criteria firstly. Then, update criteria is
transformed into query statement. Through querying
the data, id is gotten from database. Finally, cache
controller combines the update content with id and
saves them.

Fig. 4 Flow diagram of cache writing.

4.2 Cache Reading
In CSFUD, it is difficult to get the accurate data
from the database since updated data were stored in
cache. Therefore, the query results should be
corrected by cache data. The detail process is
depicted in Fig. 5, data queries are handled by the
query controller and result corrector.

Fig. 5 The process of data query.

When query controller receives a simple query
statement, it executes the query request in the
database and cache at the same time. Database and
the cache execute the request separately and deliver
query results to result corrector. For the cache data,
only Insert and Update types are suitable to execute
the query statement. For the Update type data, there
are only a part of record fields stored in the cache.

Therefore, CSFUD needs to connect the database to
get all the fields of the record if the stored fields
meet the query criteria. Result corrector merges the
result delivered from the database and cache, and
then corrects them by Delete type cache data. The
merging operation needs to meet the mergence rules
shown below:

• The same records: The query result from the
cache covers that from database. From section
3, Update type data are stored in both database
and cache. Apparently, the records in the cache
are more accurate than them in the database.
Therefore, if both of a record in database and
cache meets query criteria, it means the record
can be gotten in the query results of database
and cache. Herein, the query results from cache
need to replace them from database.

• The different records: Combine together.
The Insert type data is only stored in cache,
thus we cannot get them from database. When
the data meet query criteria, we need to
combine the result from cache with it from
database.

4.3 Cache Synchronization
Cache synchronization is controlled by the cache
controller module in the cache system. Update data
will be written to database in this process. The
action is triggered by the trigger variable θ and the
flow chart of cache synchronization process has
been shown in Fig. 6.

Fig. 6 The process of Cache synchronization.

Cache controller detects trigger variable θ. If θ
is greater than Ω, (which means that the θ meets the
trigger condition) cache controller will trigger the
synchronization action. Synchronization controller
reads the cache data and transforms them to update
statements. When the database receives these
statements, it updates data firstly, then maintains

WSEAS TRANSACTIONS on COMPUTERS Fusen Dong, Kun Ma, Bo Yang

E-ISSN: 2224-2872 166 Volume 14, 2015

data indexes and query caches. Data are updated in
batches since it is more effective than individual
update [16]. At last, synchronization controller
flushes the cache after data are updated successfully
in database.

As the θ controls synchronous operation, it is
very important in the module, which is affected by
many factors. The calculation formula is:

1 2

3

()
.

s tPN k k
S Tk
pn






 (1)

In (1), the parameters p, n, s, t imply the
amount of the page views of application system,
connection numbers of database, the cache data size
and cache time after-flushed. P and N represent the
average of p and n in a certain period of time, and S
and T show the appropriate cache size and cache
time respectively. In different environment, S and T
may vary greatly, because they are affected by
system factors and data conditions. For example, the
memory size and CPU performance may have great
influences on them. In addition, data size and the
frequency of updates may affect them a lot, too.
Generally, the value of S and T are obtained by two
ways: manual setting and calculated by experiments.
For manual setting, it is the administrator that set
them through their experience and knowledge. This
is easy but not very reliable. In contract, experiment
calculation is complex but very reliable. In this
paper, S and T is set by manual way. The parameters
k1, k2, k3 are used to adjust factor weights and the
range of θ.

Through comparing θ with Ω (the threshold set
in advance), cache controller determines whether
data need to be synchronized.

5 Experiments
In order to exclude the impact of the network and
node efficiency, experiments are performed on a
six-core server (X-eon(R) CPU E7-4807 @1.87GHz

×4, 8G RAM) rather than distributed environment.
MongoDB and Oracle are used to test the
performance of CSFUD. More than 5 million
records are saved in database. The server runs Linux
RedHat 64-bit. Five groups of tests were used to
verify the performance of CSFUD. Firstly, data
updating rate was compared with different number
of indexes. Then the update rate and performance of
UMM were compared. At last, the influence of
CSFUD in querying data and its performance in
application were tested.

5.1 Influence of Indexes in Data Updating
In order to display the influence of data indexes on
data updating, date updating speed was tested under
different number of indexes. The result is shown in
Fig. 7. About 10000 records were updated in
batches at the same time which was executed in
MongoDB. According to the test, the update time
slows nearly 1 second if an index was added to the
data. Additionally, the index for different type data
influences update speed differently. String is usually
the worst data type which needs more time than
other types to maintain its indexes.

Fig. 7 Influence of data indexes in updating data.

5.2 Performance of CSFUD
The update performance of CSFUD is shown in Fig.
8 and Fig. 9. In this experiment, 4 ways (database
without helper method, auxiliary index method,
asynchronous index method, and CSFUD) of
updating data were compared together and five
indexes were created for the data. Data updating of
these three types were distributed evenly. The
experimental result by MongoDB is shown in Fig. 8.
For a rational database, oracle was tested whose
result is given in Fig. 9.

From Fig. 8 and Fig. 9, it is obvious that all of
these three methods can speed the data updating, but
their performances vary a lot. It is mainly caused by
the strategy they adopted. For auxiliary index
method, it is less effective compared with
asynchronous method and CSFUD. The reason may
be that it can hardly reduce the cost of the
superposition influence in maintaining many
indexes, although it can speed index updating singly.
Moreover, five indexes were created in the
experiment. For asynchronous index method, index
maintaining is delayed, which can help to reduce the
index maintain influence sharply. CSFUD has great
advantage to other ways and its advantage becomes
larger when the updating data increase. It can save
about 80% time when 20000 need to be updated.

WSEAS TRANSACTIONS on COMPUTERS Fusen Dong, Kun Ma, Bo Yang

E-ISSN: 2224-2872 167 Volume 14, 2015

That is mainly because CSFUD stores the updated
data to cache instead of database and the time
consumption is mainly on the querying the update
criteria. It is known that data query is much faster
that update. Besides, the CSFUD performance is
better in MongoDB than Oracle since MongoDB is
quicker in processing Update and Delete type
update.

Fig. 8 Update performance of cache system for

frequently updated data in MongoDB.

Fig. 9 Update performance of cache system for
frequently updated data in Oracle.

From section 3, UMM merges update

operations to the same record， which reduces the
total update times towards the database. Therefore,
the merging performance of UMM were tested.
Food traceability data were utilized in the test,
which include much location information and data
that were frequently updated and queried. The result
is shown in Fig. 10. When the number of updated
data is less than 10000, the performance of UMM is
not apparent, but as the updated data number
becomes larger, especially the number of update
data more than 12000, the advantage of CSFUD
becomes obvious and about 3000 times update
operations are merged.

Fig. 10 Merging performance of update

merging.
As data queries in CSFUD need to correct the

results from database by the cache data, it is
apparent that the correction process affects data
query speed. Therefore, query speed has been tested
and the results are shown in Fig. 11 and Fig. 12.
Fig.11 is the test result from MongoDB, while Fig.
12 is from Oracle.

Fig. 11 Query performance of cache model for

frequently updated data in MongoDB.

Fig. 12 Query performance of cache model for

frequently updated data in Oracle.
Data query becomes slower with CSFUD. By

the test result, it needs about 1 second every 10000
query requests are responded. The influence of
document-oriented database and rational database is
similar. Query speed is decreased with CSFUD. The

WSEAS TRANSACTIONS on COMPUTERS Fusen Dong, Kun Ma, Bo Yang

E-ISSN: 2224-2872 168 Volume 14, 2015

influence becomes larger with the number of
queried data increased. But it is still very fast as the
excellent performance of MongoDB.

Fig. 13 shows the performance of CSFUD for
application system. In the experiment, a system for
food traceability was used in which the data are read
and write frequently. According to the test before,
the system bottleneck is mainly on data writing
speed. In the system, average response time of
system accessing was tested and the experimental
result is shown in Fig. 13.

Fig. 13 The performance of cache system for

frequently updated data in application.
From the experiment, CSFUD contributes to

accelerating system respond in the environment
under 500000 page views. It can save about 0.3
second when users interact with the system.
Particularly, when the page views number reach
500000 in the system, it meets the bottleneck of data
accessing. After using CSFUD, the system
bottleneck was lightened.

6 Conclusions and Future Work
CSFUD provides a cache strategy in solving the
index and cache maintenance problem. It caches the
data by key-value pairs, provides a data merging
method and synchronizes cache data in batch at idle
time. In this way, the burden of database is
lightened greatly. For data queries, CSFUD corrects
the database query results by caching data to ensure
the accuracy of queries.

Future work is targeted in two directions to
complete and improve the current proposal. The first
target is adopting automatic way to get the value S
and T in (1) and they may be more reliable by this
way. Secondly, the system needs to be improved to
support transaction management.

Acknowledgements
This work was supported by the Doctoral Fund of
University of Jinan (XBS1237), the Shandong

Provincial Natural Science Foundation
(ZR2014FQ029), and the National Natural Science
Foundation of China (61173078).

References:
[1] Z. Lin, Y. Lai, C. Lin, Y. Xie, and Q. Zhou,

“Research on cloud databases,” Journal of
Software, Vol. 23, No. 05, 2012, pp. 1148–
1166.

[2] Y. Shi and X. Meng, “A survey of query
techniques in cloud data management systems,”
Chinese Journal of Computers, Vol. 36, No. 02,
2013, pp. 209–225.

[3] Kun Ma and Bo Yang, “Introducing Extreme
Data Storage Middleware of Schema-free
Document Stores using MapReduce,”
International Journal of Ad Hoc and
Ubiquitous Computing, online, 2014.

[4] Kun Ma, Bo Yang, and Ajith Abraham,
“Toward Full-text Searching Middleware over
Hierarchical Documents, ” Proceedings of the
thirteenth International Conference on
Intelligent Systems Design and Applications
(ISDA 2013), Serdang, Malaysia, December 8-
10, 2013, pp.194-198.

[5] Sidlauskas, Darius, et al. "Thread-level parallel
indexing of update intensive moving-object
workloads," Advances in Spatial and Temporal
Databases. Springer Berlin Heidelberg, 2011,
pp. 186-204.

[6] Lietsalmi, Mikko, Jaakko Vanttila, and Seppo
Alanara. "Mobile station and network having
hierarchical index for cell broadcast service."
U.S. Patent No. 6,201,974. 13 Mar. 2001.

[7] Kyle Banker: MongoDB in Action. Manning
Publications Co., CT. 2011.

[8] MC Brown: Getting Started with CloudDB. O'
Relly Media lnc. , MA. 2012.

[9] Xiang, Peng, Ruichun Hou, and Zhiming Zhou.
"Cache and consistency in NoSQL," Computer
Science and Information Technology (ICCSIT),
2010 3rd IEEE International Conference on .
Vol. 6. IEEE, 2010.

[10] P. Gupta, N. Zeldovich, and S. Madden, “A
trigger-Based middleware cache for ORMs,”
Middleware 2011, Springer Berlin Heidelberg,
2011, pp. 329–349.

[11] D. Sun, X. Hao, and Z. Hao, “Indexing method
of moving objects with frequent update,”
Computer Engineering, Vol. 39, No. 11, 2013
pp. 52–56.

[12] J. Pan, T. Ma, and J. Liu, “Research on moving
objects' index in the update-intensive
environments,” Journal of Wuhan University of

WSEAS TRANSACTIONS on COMPUTERS Fusen Dong, Kun Ma, Bo Yang

E-ISSN: 2224-2872 169 Volume 14, 2015

Technology, Vol. 32, No. 16, 2010, pp. 164–
168+176.

[13] MoonBae Song, “Managing frequent updates in
R-Trees for update-intensive applications,”
Transactions on Knowledge and Data
Engineering, Vol. 21, No. 11, 2009, pp. 1573–
1589.

[14] Bahle, Dirk, Hugh E. Williams, and Justin
Zobel. "Efficient phrase querying with an
auxiliary index." Proceedings of the 25th
annual international ACM SIGIR conference
on Research and development in information
retrieval. ACM, 2002.

[15] Per-Ake Larson, Jingren Zhou. "Asynchronous
database index maintenance," U.S. Patent No.
8,140,495. 20 Mar. 2012.

[16] K. Pollari-Malmi, E. Soisalon-Soininen, and T.
Ylonen, “Concurrency control in B-trees with
batch updates,” IEEE Trans. Knowl. Data Eng.,
Vol. 8, No. 6, 1996, pp. 975–984.

WSEAS TRANSACTIONS on COMPUTERS Fusen Dong, Kun Ma, Bo Yang

E-ISSN: 2224-2872 170 Volume 14, 2015

